Last Updated:2025/12/05
Sentence
講義でその数学者は、合同な長方形の煉瓦を大きな長方形の箱に隙間なく詰めることに関する定理を示し、各辺の長さが次に小さい辺の長さの整数倍になっている「調和ブリック」は箱の寸法がそのブリックの寸法の整数倍である場合にのみそのようにぴったり詰められることを説明した。
Quizzes for review
In the lecture, the mathematician demonstrated de Bruijn's theorem by packing harmonic bricks into a larger rectangular box to show that such a packing is possible only when the box's dimensions are integer multiples of the bricks'.
See correct answer
In the lecture, the mathematician demonstrated de Bruijn's theorem by packing harmonic bricks into a larger rectangular box to show that such a packing is possible only when the box's dimensions are integer multiples of the bricks'.
音声機能が動作しない場合はこちらをご確認ください
Related words
de Bruijn's theorem
Proper noun
(mathematics)
A
theorem
about
packing
congruent
rectangular
bricks
into
larger
rectangular
boxes
so
that
no
space
is
left
over.
It
states
that
a
"harmonic
brick"
(one
in
which
each
side
length
is
a
multiple
of
the
next
smaller
side
length)
can
only
be
packed
into
a
box
whose
dimensions
are
multiples
of
the
brick's
dimensions.
Japanese Meaning
数学における定理で、同一の大きさの長方形状のブリック(レンガ)を、大きな直方体の箱(直方体ボックス)に隙間なく詰める問題に関連する。具体的には、各辺の長さが次に小さい辺の長さの整数倍である「調和的ブリック」は、そのレンガの寸法の整数倍を持つ箱にのみ詰め込むことができる、という内容を主張する定理です。
Word Edit Setting
- Users who have edit permission for words - All Users
- Screen new word creation
- Screen word edits
- Screen word deletion
- Screen the creation of new headword that may be duplicates
- Screen changing entry name
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
Sentence Edit Setting
- Users who have edit permission for sentences - All Users
- Screen sentence deletion
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
Quiz Edit Setting
- Users who have edit permission for quizzes - All Users
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
