Last Updated:2025/12/04
Sentence
Quizzes for review
In commutative algebra, a radical ideal is an ideal I such that whenever a power rn of an element r in the ring belongs to I for some positive integer n, then r itself belongs to I.
See correct answer
In commutative algebra, a radical ideal is an ideal I such that whenever a power rn of an element r in the ring belongs to I for some positive integer n, then r itself belongs to I.
音声機能が動作しない場合はこちらをご確認ください
Related words
radical ideal
Noun
Japanese Meaning
環 R のイデアル I が、自身の冪根(すなわち、任意の元 r ∈ R について、ある正の整数 n により rⁿ ∈ I ならば必ず r ∈ I となる部分集合)と一致することを意味する。 / 言い換えると、ある正の整数 n に対して rⁿ が含まれるならば、r 自身も含まれている性質を持つイデアルである。
Related Words
Word Edit Setting
- Users who have edit permission for words - All Users
- Screen new word creation
- Screen word edits
- Screen word deletion
- Screen the creation of new headword that may be duplicates
- Screen changing entry name
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
Sentence Edit Setting
- Users who have edit permission for sentences - All Users
- Screen sentence deletion
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
Quiz Edit Setting
- Users who have edit permission for quizzes - All Users
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
