Last Updated:2025/11/21
Sentence
証明で構成された加群は、射影加群を射影部分加群で割った商であり、自己に対する Ext が 0 になり、有限個の直和の直和因子間の全射の核として右加群が存在するという性質を満たしている。
Quizzes for review
The tilting module constructed in the proof is a quotient of a projective module by a projective submodule, has Ext with itself equal to zero, and admits a right module as the kernel of a surjective morphism between finite direct sums of its direct summands.
See correct answer
The tilting module constructed in the proof is a quotient of a projective module by a projective submodule, has Ext with itself equal to zero, and admits a right module as the kernel of a surjective morphism between finite direct sums of its direct summands.
音声機能が動作しない場合はこちらをご確認ください
Related words
tilting
Adjective
not-comparable
Japanese Meaning
数学(特に加群論)において、tilting とは、射影加群の部分からの射影加群による商として表現される加群であり、その加群自身との Ext 函手が 0 となる性質を持つ。また、有限個のその直和の部分からの全射写像の核として右加群が現れるという性質を有するものを指す。このような性質は、特定の変形(tilting)理論や対応関係の構築に利用される。
Word Edit Setting
- Users who have edit permission for words - All Users
- Screen new word creation
- Screen word edits
- Screen word deletion
- Screen the creation of new headword that may be duplicates
- Screen changing entry name
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
Sentence Edit Setting
- Users who have edit permission for sentences - All Users
- Screen sentence deletion
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
Quiz Edit Setting
- Users who have edit permission for quizzes - All Users
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
