Last Updated:2025/11/21
Sentence

数論の試験の準備をしているとき、私は任意の n>1 に対して n と 2n の間に少なくとも1つの素数が存在することを保証する定理を学び、その示唆に感銘を受けた。

Quizzes for review

When preparing for the number theory exam, I studied the Bertrand-Chebyshev theorem and was fascinated by its guarantee that there is at least one prime between n and 2n for every n>1.

See correct answer

When preparing for the number theory exam, I studied the Bertrand-Chebyshev theorem and was fascinated by its guarantee that there is at least one prime between n and 2n for every n>1.

音声機能が動作しない場合はこちらをご確認ください

Related words

Bertrand-Chebyshev theorem

Proper noun
Japanese Meaning
任意の n > 1 に対して、n と 2n の間に少なくとも1つの素数が存在するという数学的定理
What is this buttons?

数論の試験の準備をしているとき、私は任意の n>1 に対して n と 2n の間に少なくとも1つの素数が存在することを保証する定理を学び、その示唆に感銘を受けた。

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★