Last Updated:2025/11/19
Sentence

f: A → B が全射であることを証明するには、B の任意の元 b に対して f(a) = b を満たす A の元 a が存在することを示さなければなりません。

Quizzes for review

To prove that f: A → B is a surjection, we must show that for every element b in B there exists an a in A with f(a) = b.

See correct answer

To prove that f: A → B is a surjection, we must show that for every element b in B there exists an a in A with f(a) = b.

音声機能が動作しない場合はこちらをご確認ください

Related words

surjection

IPA(Pronunciation)
Noun
Japanese Meaning
全射:集合論における写像で、定義域の各々の元が写像される先である値域のすべての元に対して、少なくとも1つの元が対応する関数。
What is this buttons?

f: A → B が全射であることを証明するには、B の任意の元 b に対して f(a) = b を満たす A の元 a が存在することを示さなければなりません。

Related Words

plural

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★