smash product
(mathematics) For two pointed spaces (i.e. topological spaces with distinguished basepoints) X and Y, the quotient of the product space X × Y under the identifications (x, y₀) ∼ (x₀, y) for all x ∈ X and y ∈ Y; usually denoted X ∧ Y.
Pertaining to a sweat gland; merocrine / Pertaining to sweat / Exocrine
Alternative form of pseudohomolog
(transitive) To date by means of dendrochronology.
代数的トポロジーでは、二つの基点付き空間 X と Y の直積 X × Y を、すべての x ∈ X, y ∈ Y に対して (x, y_0) を (x_0, y) と同一視して得られる剰余、すなわちスマッシュ積が、縮約コホモロジー作用の定義において基本的な役割を果たす。
Don't have an account? Sign up
Do you have an account? Login
DiQt
Free
★★★★★★★★★★