Last Updated:2025/12/06
In complex analysis, the Mittag-Leffler function often appears when solving fractional differential equations and serves as a natural generalization of the exponential function.
See correct answer
In complex analysis, the Mittag-Leffler function often appears when solving fractional differential equations and serves as a natural generalization of the exponential function.
音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence
複素解析では、関数 E_{α,β}(z)=∑_{k=0}^∞ z^k/Γ(αk+β)(ミッタク=レフラー関数)は、分数階微分方程式を解く際にしばしば現れ、指数関数の自然な一般化として用いられます。