Last Updated:2025/12/04

The proof assumes the sets in the family are pairwise disjoint, so any two distinct members have an empty intersection.

See correct answer

The proof assumes the sets in the family are pairwise disjoint, so any two distinct members have an empty intersection.

音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence

証明では、その族に属する集合が互いに素であると仮定しているため、任意の異なる2つの集合の交わりは空集合になる。

Sentence quizzes to help you learn to read

Edit Histories(0)

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★