Last Updated:2025/11/27
A Poincaré space often serves as an algebraic-topology analogue of a manifold, because its distinguished fundamental class μ induces cap-product isomorphisms between cohomology groups in complementary dimensions.
See correct answer
A Poincaré space often serves as an algebraic-topology analogue of a manifold, because its distinguished fundamental class μ induces cap-product isomorphisms between cohomology groups in complementary dimensions.
音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence
そのようなn次元位相空間は、n次同調群の特別な元μを持ち、k次コホモロジー群の元とのキャップ積により(n − k)次コホモロジー群への同型を与えるため、代数的位相幾何学で多様体のモデルとしてしばしば用いられる。