Last Updated:2025/11/22
(number theory, analytic number theory, uncountable) The function ζ defined by the Dirichlet series 𝜁(s)=∑ₙ₌₁ ᪲1/(nˢ)=1/(1ˢ)+1/(2ˢ)+1/(3ˢ)+1/(4ˢ)+⋯, which is summable for points s in the complex half-plane with real part > 1; the analytic continuation of said function, being a holomorphic function defined on the complex numbers with pole at 1.
音声機能が動作しない場合はこちらをご確認ください
See correct answer
Riemann zeta function
Edit Histories(0)
Source Word
Riemann zeta function
Noun
uncountable
usually
countable
(number
theory,
analytic
number
theory,
uncountable)
The
function
ζ
defined
by
the
Dirichlet
series
𝜁(s)=∑ₙ₌₁ ᪲1/(nˢ)=1/(1ˢ)+1/(2ˢ)+1/(3ˢ)+1/(4ˢ)+⋯,
which
is
summable
for
points
s
in
the
complex
half-plane
with
real
part
>
1;
the
analytic
continuation
of
said
function,
being
a
holomorphic
function
defined
on
the
complex
numbers
with
pole
at
1.
Japanese Meaning
リーマンゼータ関数(ζ関数)は、ディリクレ級数 ζ(s)=∑ₙ₌₁ 1/(n^s) により定義され、実部が1より大きい複素数 s の半平面で収束する関数です。解析接続により、この関数は複素全体に拡張され、1に極を持つホロモルフィック関数(複素解析可能な関数)として扱われ、数論および解析数論で重要な役割を果たします。
Sense(1)
(number
theory,
analytic
number
theory,
uncountable)
The
function
ζ
defined
by
the
Dirichlet
series
𝜁(s)=∑ₙ₌₁ ᪲1/(nˢ)=1/(1ˢ)+1/(2ˢ)+1/(3ˢ)+1/(4ˢ)+⋯,
which
is
summable
for
points
s
in
the
complex
half-plane
with
real
part
>
1;
the
analytic
continuation
of
said
function,
being
a
holomorphic
function
defined
on
the
complex
numbers
with
pole
at
1.
( plural )