Last Updated:2025/12/04
(differential geometry) A theorem stating that, for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data).
音声機能が動作しない場合はこちらをご確認ください
See correct answer
Atiyah-Singer index theorem
Edit Histories(0)
Source Word
Atiyah-Singer index theorem
Proper noun
Japanese Meaning
コンパクト多様体上の楕円型微分作用素に対して、解空間の次元に関連する解析的指数と、位相的な性質に基づいて定義される位相的指数が一致することを示す定理。